题目内容
已知函数f(x)=
,数列{an}满足:an>0,a1=1,an+1=f(an),n∈N+
(I )求数列{an}的通项公式;
(II)若bn=
+1,对任意正整数n,不等式
-
≤0恒成立,求正数k的取值范围.
| x |
| x+1 |
(I )求数列{an}的通项公式;
(II)若bn=
| 2 |
| an |
| kn+1 | ||||||||
(1+
|
| kn | ||
|
分析:(Ⅰ)根据函数f(x)=
,an+1=f(an),可得
-
=1,从而数列{
}是以1为首项,1为公差的等差数列,由此可求数列{an}的通项公式;
(II)根据bn=
+1,可得bn=2n+1,分离参数可得k≤
(1+
)(1+
)…(1+
),再构造函数g(n)=
(1+
)(1+
)…(1+
),证明g(n)在n∈N*上递增,求出g(n)的最小值,即可求得正数k的取值范围.
| x |
| x+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(II)根据bn=
| 2 |
| an |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
解答:解:(Ⅰ)由题意,∵函数f(x)=
,an+1=f(an)
∴an+1=
,
∴
-
=1
∵a1=1,∴数列{
}是以1为首项,1为公差的等差数列.
∴
=n,∴an=
(II)∵bn=
+1,∴bn=2n+1,
∴对任意正整数n,不等式
-
≤0恒成立等价于
k≤
(1+
)(1+
)…(1+
)
记g(n)=
(1+
)(1+
)…(1+
)
∴g(n+1)=
(1+
)(1+
)…(1+
)
∴
=
=
>1
∴g(n+1)>g(n),即g(n)在n∈N*上递增,
∴g(n)min=g(1)=
∴k∈(0,
].
| x |
| x+1 |
∴an+1=
| an |
| an+1 |
∴
| 1 |
| an+1 |
| 1 |
| an |
∵a1=1,∴数列{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| n |
(II)∵bn=
| 2 |
| an |
∴对任意正整数n,不等式
| kn+1 | ||||||||
(1+
|
| kn | ||
|
k≤
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
记g(n)=
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
∴g(n+1)=
| 1 | ||
|
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn+1 |
∴
| g(n+1) |
| g(n) |
| 2n+4 | ||||
|
| ||
|
∴g(n+1)>g(n),即g(n)在n∈N*上递增,
∴g(n)min=g(1)=
4
| ||
| 15 |
∴k∈(0,
4
| ||
| 15 |
点评:本题主要考查了数列与不等式的综合,以及等差数列的判定和数列的函数特性,同时考查了计算能力和转化的数学思想,属于中档题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|