题目内容
17.过点(1,$\sqrt{2}$)的直线l将圆(x-2)2+y2=4分成两段弧,当优弧所对的圆心角最大时,直线l的斜率k=$\frac{\sqrt{2}}{2}$.分析 本题考查的是直线垂直时斜率之间的关系,及直线与圆的相关性质,要处理本题我们先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由优弧所对的圆心角最大,劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.
解答
解:如图示,由图形可知:
点A(1,$\sqrt{2}$)在圆(x-2)2+y2=4的内部,
圆心为O(2,0),要使得优弧所对的圆心角最大,则劣弧所对的圆心角最小,只能是直线l⊥OA,
所以k=-$\frac{1}{{k}_{OA}}$=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所对的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小.
练习册系列答案
相关题目
7.当输入的x值为3时,如图的程序运行的结果等于( )

| A. | -3 | B. | 3 | C. | -2 | D. | 2 |
8.设命题p:{x|x2-4ax+3a2<0}(a>0),命题q:{x|1<x-1≤2}
(1)如果a=1,且p∧q为真时,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件时,求实数a的取值范围.
(1)如果a=1,且p∧q为真时,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件时,求实数a的取值范围.
5.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是( )
| A. | m≤-2或m≥2 | B. | -2≤m≤2 | C. | m<-2或m>2 | D. | -2<m<2 |
2.(理)已知a2+c2-ac-3=0,则c+2a的最大值是( )
| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{7}$ | D. | 3$\sqrt{3}$ |
7.已知f(x+1)=x2,则f(3)=( )
| A. | 9 | B. | 16 | C. | 4 | D. | -4 |