题目内容
【题目】命题p:关于x的不等式
的解集为
;命题q:函数
为增函数.命题r:a满足
.
(1)若p∨q是真命题且p∧q是假题.求实数a的取值范围.
(2)试判断命题¬p是命题r成立的一个什么条件.
【答案】(1) ﹣1≤a<﹣
或
<a≤1;(2) 充分不必要条件
【解析】试题分析:
利用判别式
求出
为真时
的取值范围,根据指数函数的图象与性质求出
为真时
的取值范围,由
是真命题且
是假命题知
一真一假,由此求出
的范围。
解不等式
得出命题
为真时
的取值范围,根据集合的包含关系判断命题
是命题
成立的充分不必要条件。
解析:关于x的不等式x2+(a﹣1)x+a2≤0的解集为,
∴△=(a﹣1)2﹣4a2<0,
即3a2+2a﹣1>0,
解得a<﹣1或a>
,
∴p为真时a<﹣1或a>
;
又函数y=(2a2﹣a)x为增函数,
∴2a2﹣a>1,
即2a2﹣a﹣1>0,
解得a<﹣
或a>1,
∴q为真时a<﹣
或a>1;
(1)∵p∨q是真命题且p∧q是假命题,∴p、q一真一假,
∴当P假q真时,
,即﹣1≤a<﹣
;
当p真q假时,
,即
<a≤1;
∴p∨q是真命题且p∧q是假命题时,a的范围是﹣1≤a<﹣
或
<a≤1;
(2)∵
,
∴
﹣1≤0,
即
,
解得﹣1≤a<2,
∴a∈[﹣1,2),
∵p为真时﹣1≤a≤
,
由[﹣1,
)是[﹣1,2)的真子集,
∴pr,且r≠>p,
∴命题p是命题r成立的一个充分不必要条件.
练习册系列答案
相关题目