题目内容
已知在数列{an}中,a1=
,Sn是其前n项和,且Sn=n2an-n(n-1).
(1)求{an}的通项公式;
(2)令bn=(
)n+1-an,记数列{bn}的前n项和为Tn,求证:Tn<2.
| 1 |
| 2 |
(1)求{an}的通项公式;
(2)令bn=(
| 1 |
| 2 |
(1)∵an=Sn-Sn-1 (n≥2),Sn=n2an-n(n-1)
∴Sn=n2(Sn-Sn-1)-n(n-1),即(n2-1 )Sn-n2Sn-1=n(n-1),
∴
Sn-
Sn-1=1,∴{
Sn}是首项为1,公差为1的等差数列
∴
Sn=1+(n-1)×1=n,∴Sn=
∵Sn=n2an-n(n-1)
∴
=n2an-n(n-1)
∴an=1-
;
(2)证明:由(1)知,bn=(
)n+1-an=(
)n+
=(
)n+
-
∴Tn=
+
+…+
+1-
+
-
+…+
-
=1-
+1-
<2
∴Sn=n2(Sn-Sn-1)-n(n-1),即(n2-1 )Sn-n2Sn-1=n(n-1),
∴
| n+1 |
| n |
| n |
| n-1 |
| n+1 |
| n |
∴
| n+1 |
| n |
| n2 |
| n+1 |
∵Sn=n2an-n(n-1)
∴
| n2 |
| n+1 |
∴an=1-
| 1 |
| n2+n |
(2)证明:由(1)知,bn=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n2+n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2n |
| 1 |
| n+1 |
练习册系列答案
相关题目