题目内容
【题目】如图,已知抛物线
:
,四边形
和
都为正方形,原点
为
的中点,点
在抛物线
上.
![]()
(1)求点
和点
的坐标;
(2)过点
的直线
与抛物线
相交于
两点,若
,求直线
的方程.
【答案】(1)
,点
的坐标为
(2)直线
的方程为
或![]()
【解析】
(1)分别假设正方形
和
边长为
,利用
表示出
坐标,代入抛物线方程可构造方程求得
,进而得到所求坐标;
(2)设
,将直线方程与抛物线方程联立,得到韦达定理的形式;根据数量积的坐标运算,代入韦达定理的结论可构造方程求得
,从而得到所求直线方程.
(1)设正方形
的边长为
,则![]()
代入
得:
,解得:
或
(舍)
点
的坐标为![]()
设正方形
的边长为
,则![]()
代入方程
得:
,解得
或
(舍)
点
的坐标为![]()
(2)由(1)知
,![]()
设直线
的方程为
,点
的坐标分别为
,![]()
联立方程
,消去
整理为:![]()
则
,![]()
又
,
,
![]()
由
得:
,解得:![]()
故直线
的方程为![]()
即直线
的方程为:
或![]()
【题目】2019年6月,国内的
运营牌照开始发放.从
到
,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对
的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:
用户分类 | 预计升级到 | 人数 |
早期体验用户 | 2019年8月至2019年12月 | 270人 |
中期跟随用户 | 2020年1月至2021年12月 | 530人 |
后期用户 | 2022年1月及以后 | 200人 |
我们将大学生升级
时间的早晚与大学生愿意为
套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为
套餐多支付5元的人数占所有早期体验用户的
).
![]()
(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到
的概率;
(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以
表示这2人中愿意为升级
多支付10元或10元以上的人数,求
的分布列和数学期望;
套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
|
|
|
|
|
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
![]()
(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.