题目内容

已知sin2α+sin2β+sin2γ=1(α、β、γ均为锐角),那么cosαcosβcosγ的最大值等于   
【答案】分析:根据同角三角函数基本关系,sin2α+sin2β+sin2γ=1⇒cos2α+cos2β+cos2γ=2;进而由基本不等式的性质,可得cos2α+cos2β+cos2γ≥3,将cos2α+cos2β+cos2γ=2代入,化简可得答案.
解答:解:∵sin2α+sin2β+sin2γ=1,
∴3-(cos2α+cos2β+cos2γ)=1.
∴cos2α+cos2β+cos2γ=2≥3
∴cos2αcos2βcos2γ≤(3
∴cosαcosβcosγ≤==
答案:
点评:本题考查基本不等式的性质与运用,正确运用公式要求“一正、二定、三相等”,解题时要注意把握和或积为定值这一条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网