题目内容

将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)开始向左数,黑球的个数总是不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:根据题意,易得“有效排列”的个数为5,进而由组合数公式,可得“所有的排列”的个数,再根据等可能事件的概率,计算可得答案.
解答:根据题意,分析可得,“有效排列”的个数为5,
再求所有的排列的个数,即从6个位置中,任取3个放白球或黑球,故其数目为C63=20,
由等可能事件的概率,所求概率为
故选B.
点评:本题考查等可能事件的概率与组合数公式的运用,注意组合数公式运用时,明确事件之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网