题目内容
已知定义域为(-1,1)的奇函数y=f(x)又是增函数,且f(a-2)+f(4-a2)>0,则a的取值范围是( )
A.(
| B.(
| C.(
| D.(-1,3) |
因为函数y=f(x)是奇函数,
所以f(a-2)+f(4-a2)>0可以转化为f(a-2)>f(a2-4).
又因为定义域为(-1,1)又是增函数,
所以有
解得:
<a<2.
故选:B.
所以f(a-2)+f(4-a2)>0可以转化为f(a-2)>f(a2-4).
又因为定义域为(-1,1)又是增函数,
所以有
|
| 3 |
故选:B.
练习册系列答案
相关题目
已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0,则a的取值范围是( )
A、(2
| ||
B、(3,
| ||
C、(2
| ||
| D、(-2,3) |
已知定义域为(-1,1)的奇函数y=f(x)又是增函数,且f(a-2)+f(4-a2)>0,则a的取值范围是( )
A、(
| ||||
B、(
| ||||
C、(
| ||||
| D、(-1,3) |