题目内容

4.己知实数x,y满足$\frac{{x}^{2}}{3}$+y2=1,则P=|2x+y-4|+|4-x-2y|的取值范围是[2,14].

分析 设x=$\sqrt{3}$cosθ,y=sinθ,θ∈[0,2π).可得:P=|2x+y-4|+|4-x-2y|=$|2\sqrt{3}cosθ+sinθ-4|$+$|\sqrt{3}cosθ+2sinθ-4|$=8-6$sin(θ+\frac{π}{3})$,即可得出.

解答 解:设x=$\sqrt{3}$cosθ,y=sinθ,θ∈[0,2π).
P=|2x+y-4|+|4-x-2y|
=$|2\sqrt{3}cosθ+sinθ-4|$+$|\sqrt{3}cosθ+2sinθ-4|$
=4-$2\sqrt{3}$cosθ-sinθ+4-$\sqrt{3}$cosθ-2sinθ
=8-$3\sqrt{3}$cosθ-3sinθ
=8-6$(\frac{1}{2}sinθ+\frac{\sqrt{3}}{2}cosθ)$
=8-6$sin(θ+\frac{π}{3})$∈[2,14].
故答案为:[2,14].

点评 本题考查了椭圆的参数方程、三角函数求值、和差化积,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网