题目内容
在△ABC中,内角A,B,C的对边分别为a,b,c,且cos2B+cosB=0.
(Ⅰ)求角B的值;
(Ⅱ)若 b=
,a+b=5,求△ABC的面积.
(Ⅰ)求角B的值;
(Ⅱ)若 b=
| 7 |
(Ⅰ)在△ABC中,由已知cos2B+cosB=0得 2cos2B+cosB-1=0,…(2分)
解得 cosB=
,或cosB=-1(舍去). …(4分)
所以,B=
. …(6分)
(Ⅱ)由余弦定理得 b2=a2+c2-2ac•cosB. …(8分)
将B=
,b=
代入上式,整理得 (a+c)2-3ac=7.
因为 a+c=5,所以,ac=6. …(11分)
所以△ABC的面积 S=
ac•sinB=
. …(13分)
解得 cosB=
| 1 |
| 2 |
所以,B=
| π |
| 3 |
(Ⅱ)由余弦定理得 b2=a2+c2-2ac•cosB. …(8分)
将B=
| π |
| 3 |
| 7 |
因为 a+c=5,所以,ac=6. …(11分)
所以△ABC的面积 S=
| 1 |
| 2 |
3
| ||
| 2 |
练习册系列答案
相关题目