题目内容

已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f(x)的解析式;
(2)若0≤θ≤π,求θ使函数f(x)为奇函数;
(3)在(2)成立的条件下,求满足f(x)=1,x∈[-π,π]的x的集合.
分析:(1)利用二倍角的正弦公式得 2sin(x+
θ
2
)cos(x+
θ
2
)=sin(2x+θ),再由二倍角的余弦公式得2
3
cos2(x+
θ
2
)=
3
cos(2x+θ)+
3
,再利用两角和的正弦公式进行化简.
(2)由函数f(x)为奇函数可得 f(0)=0,即 2sin(θ+
π
3
)=0,即θ+
π
3
=kπ,k∈z,根据 0≤θ≤π,求出θ 的值.
(3)由f(x)=1,化简可得sin2x=-
1
2
,故有 2x=-
π
6
+2kπ或2x=
6
+2kπ
,解出x.
解答:解:(1)f(x)=sin(2x+θ)+2
3
1+cos(2x+θ)
2
-
3
=sin(2x+θ)+
3
cos(2x+θ)=2sin(2x+θ+
π
3
).
(2)由函数f(x)为奇函数可得 f(0)=0,所以2sin(θ+
π
3
)=0,即θ+
π
3
=kπ,k∈z,由 0≤θ≤π,所以θ=
3

(3)f(x)=2sin(2x+θ+
π
3
)=-2sin2x=1,所以sin2x=-
1
2

2x=-
π
6
+2kπ或2x=
6
+2kπ
,所以,x=kπ-
π
12
  或 x=kπ+
12

在x∈[-π,π]中,x∈{-
π
12
,-
12
12
11π
12
}
.(14分)
点评:本题考查二倍角的三角公式、两角和的正弦公式的应用,正弦函数的奇偶性,已知三角函数值求角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网