题目内容
已知n∈N*,数列{an}和{bn}满足a1=b1=6,a2=4,数列{bn}的前n项和为Sn且Sn+1=(1)求证:{bn-2}是等比数列;
(2)若数列{an+1-an}(n∈N*)是公差为1的等差数列,试比较an与bn的大小.
解:(1)证明:当n≥2时,Sn+1=
Sn+n+6, ①
Sn=
Sn-1+n+5, ②
①-②,得bn+1=
bn+1.
∴bn+1-2=
(bn-2),即n≥2时{bn-2}是等比数列.
又S2=
S1+1+6,
∴b2=-
b1+1+6-b1=4.
∴b2-2=
(b1-2)=2,即n∈N*时{bn-2}是等比数列.
(2)由(1)知bn-2=(b1-2)·(
)n-1,即bn=2+8·(
)n.
由已知a2-a1=-2,∴an+1-an=(a2-a1)+(n-1)·1=n-3.
n≥2时,
an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1=(n-4)+(n-5)+…+(-1)+(-2)+6=
.
n=1也合适.
∴an=
(n∈N*).
设f(n)=an-bn=
n2-
n+7-8·(
)n=
(n-
)2+
-8·(
)n.
当n≥4时
(n-
)2+
为n的增函数,-8·(
)n也为n的增函数,
∴当n≥4时有f(n)≥f(4)=
,即an-bn≥
.
又f(1)=f(2)=f(3)=0,∴对n∈N*都有an≥bn.