题目内容

设a1,a2,a3,a4,a5构成等比数列,若a2a5<0,则下列各式正确的是(  )
A.a1a3a4a5>0B.a1a2a4a5<0C.a1a2a3a5>0D.a1a2a3a4>0
设公比为q,由等比数列的通项公式可得a2a5=a1q•a1q4=a12•q5<0,
∴q<0;
A、a1a3a4a5=a1•a1q2•a1q3•a1q4=a14q9<0,故错误;
B、a1a2a4a5=a1•a1q•a1q3•a1q4=a14q8>0,故错误;
C、a1a2a3a5=a1•a1q•a1q2•a1q4=a14q7<0,故错误;
D、a1a2a3a4=a1•a1q•a1q2•a1q3=a14q6>0,故正确;
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网