题目内容
设k∈Z,函数y=sin(
-
)sin(
+
)的单调递增区间为( )
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
分析:化简函数y=sin(
-
)sin(
+
)
cos2
-
sin2
=
cosx,由此可得函数的增区间即为函数y=cosx的增区间.
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
解答:解:由于k∈Z,函数y=sin(
-
)sin(
+
)=(
cos
-
sin
)(
cosx+
sin
)
=
cos2
-
sin2
=
cosx,
令 2kπ-π≤x≤2kπ,可得减区间为[2kπ-π,2kπ],k∈z,
故选A.
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| ||
| 2 |
| x |
| 2 |
| ||
| 2 |
| x |
| 2 |
| ||
| 2 |
| ||
| 2 |
| x |
| 2 |
=
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
令 2kπ-π≤x≤2kπ,可得减区间为[2kπ-π,2kπ],k∈z,
故选A.
点评:本题主要考查三角函数的恒等变换及化简求值,三角函数的单调性,属于中档题.
练习册系列答案
相关题目