题目内容
(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.
(2)已知
,
,
成等差数列,求证
,
,
也成等差数列.
(2)已知
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| b+c |
| a |
| c+a |
| b |
| a+b |
| c |
(1)证明:当n=1时,a1=S1=3-2=1,
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,
n=1时,亦满足,∴an=6n-5(n∈N*).
首项a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),
∴数列{an}成等差数列且a1=1,公差为6.
(2)∵
,
,
成等差数列,
∴
=
+
化简得2ac=b(a+c).
∴
+
=
=
=
=
=
.
∴
,
,
也成等差数列.
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,
n=1时,亦满足,∴an=6n-5(n∈N*).
首项a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),
∴数列{an}成等差数列且a1=1,公差为6.
(2)∵
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
∴
| 2 |
| b |
| 1 |
| a |
| 1 |
| c |
∴
| b+c |
| a |
| a+b |
| c |
| bc+c2+a2+ab |
| ac |
| 2ac+a2+c2 |
| ac |
| (a+c)2 |
| ac |
| (a+c)2 | ||
|
| 2(a+c) |
| b |
∴
| b+c |
| a |
| c+a |
| b |
| a+b |
| c |
练习册系列答案
相关题目
(1)已知数列{an}的第1项 a1=1,且an+1=
( n=1,2,3…)使用归纳法归纳出这个数列的通项公式.(不需证明)
(2)用分析法证明:若a>0,则
-
≥a+
-2.
| an |
| 1+an |
(2)用分析法证明:若a>0,则
a2+
|
| 2 |
| 1 |
| a |