题目内容
已知F1为椭圆的左焦点,A、B分别为椭圆的右顶点和上顶点,P为椭圆上的点,当PF1⊥F1A,PO∥AB(O为椭圆中心)时,求椭圆的离心率.
设椭圆方程为
+
=1(a>b>0),F1(-c,0),c2=a2-b2,
则P(-c,b
),即P(-c,
).
∵AB∥PO,∴kAB=kOP,
即-
=
.∴b=c.
又∵a=
=
b,
∴e=
=
=
.
| x2 |
| a2 |
| y2 |
| b2 |
则P(-c,b
1-
|
| b2 |
| a |
∵AB∥PO,∴kAB=kOP,
即-
| b |
| a |
| -b2 |
| ac |
又∵a=
| b2+c2 |
| 2 |
∴e=
| c |
| a |
| b | ||
|
| ||
| 2 |
练习册系列答案
相关题目