题目内容
设f(x)=x3+3x2+px, g(x)=x3+qx2+r,且y=f(x)与y=g(x)的图象关于点(0,1)对称.(1)求p、q、r的值;(2)若函数g(x)在区间(0,m)上递减,求m的取值范围;(3)若函数g(x)在区间 上的最大值为2,求n的取值范围.
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.如“函数f(x)=x3-3x2+3x对称中心为点 (1,1)”请你将这一发现
(本小题满分12分)
已知函数f(x)=x3+bx2+cx+d (b,c,d∈R且都为常数)的导函数f¢(x)=3x2+4x且f(1)=7,设F(x)=f(x)-ax2
(1)当a<2时,求F(x)的极小值;
(2)若对任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范围;
(3)在(2)的条件下比较a2-13a+39与的大小.