题目内容
【题目】定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界,已知函数
.
(Ⅰ)若
是奇函数,求
的值.
(Ⅱ)当
时,求函数
在
上的值域,判断函数
在
上是否为有界函数,并说明理由.
(Ⅲ)若函数
在
上是以
为上界的函数,求实数
的取值范围.
【答案】(1)
(2)是(3)
或![]()
【解析】试题分析:(1)根据奇函数定义得
,解得
的值(2)先分离得
再根据单调性求值域,最后根据值域判定
是否成立(3)转化为不等式
恒成立,再分离变量得最值,最后根据最值求实数
的取值范围.
试题解析:解:(
)由
是奇函数,则
,
得
,即
,
∴
,
.
(
)当
时,
.
∵
,∴
,∴
,满足
.
∴
在
上为有界函数.
(
)若函数
在
上是以
为上界的有界函数,则有
在
上恒成立.
∴
,
即
,
∴
,化简得:
,
即
,
上面不等式组对一切
都成立,
故
,
∴
或
.
【题目】某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:
x(单位:千元) | 2 | 4 | 7 | 17 | 30 |
y(单位:万元) | 1 | 2 | 3 | 4 | 5 |
员工小王和小李分别提供了不同的方案.
(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);
(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程:
=1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据
(yi﹣
i)2=1.15) 参考公式:相关指数R2=1﹣
回归方程
=
x+
中斜率和截距的最小二乘法估计公式分别为
=
,
=
﹣
x,参考数据:ln40=3.688,
=538.
【题目】为了研究一种昆虫的产卵数y和温度x是否有关,现收集了7组观测数据列于下表中,并做出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①
与模型;②
作为产卵数y和温度x的回归方程来建立两个变量之间的关系.
温度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数y/个 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
| | | |
26 | 692 | 80 | 3.57 |
| | | |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中
,
,zi=lnyi ,
,
附:对于一组数据(μ1 , ν1),(μ2 , ν2),(μn , νn),其回归直线v=βμ+α的斜率和截距的最小二乘估计分别为:
,
![]()
(1)根据表中数据,分别建立两个模型下y关于x的回归方程;并在两个模型下分别估计温度为30°C时的产卵数.(C1 , C2 , C3 , C4与估计值均精确到小数点后两位)(参考数据:e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相关指数计算分别为
.,请根据相关指数判断哪个模型的拟合效果更好.