题目内容

9.函数f(x)=$\sqrt{x}$-x的单调递减区间为(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{4}$)∪$\frac{1}{2}$,+∞)C.($\frac{1}{4}$,+∞)D.($\frac{1}{2}$,+∞)

分析 根据已知求导,令导数小于0,解得答案.

解答 解:∵函数f(x)=$\sqrt{x}$-x,
∴f′(x)=$\frac{1}{2\sqrt{x}}$-1,
令f′(x)=$\frac{1}{2\sqrt{x}}$-1<0,
解得:x∈($\frac{1}{4}$,+∞),
故选:C

点评 本题考查的知识点是导数的简单应用,正确理解导数的符号与原函数单调性的关系,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网