题目内容
已知向量| a |
| b |
| a |
| b |
(Ⅰ)求函数f(x)的最大值及相应的自变量x的取值集合;
(II)当x0∈(0,
| π |
| 8 |
4
| ||
| 5 |
| π |
| 3 |
分析:(Ⅰ)通过向量关系求出数量积,然后利用二倍角公式、两角和的正弦函数化简函数为:
sin(2x+
),即可求函数f(x)的最大值,借助正弦函数的最大值求出相应的自变量x的取值集合;
(II)当x0∈(0,
)且f(x0)=
时,直接得到sin(2x0+
)=
,求出cos(2x0+
)=
,化简f(x0+
)的表达式,利用两角和的正弦函数,整体代入sin(2x0+
)=
,cos(2x0+
)=
,求得f(x0+
)的值.
| 2 |
| π |
| 4 |
(II)当x0∈(0,
| π |
| 8 |
4
| ||
| 5 |
| π |
| 4 |
| 4 |
| 5 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 3 |
| π |
| 4 |
| 4 |
| 5 |
| π |
| 4 |
| 3 |
| 5 |
| π |
| 3 |
解答:(Ⅰ)∵
=(sinx,cosx+sinx),
=(2cosx,cosx-sinx),
∴f(x)=
•
=(sinx,cosx+sinx)•(2cosx,cosx-sinx)=2sinxcosx+cos2x-sin2x(1分)
=sin2x+cos2x(3分)
=
sin(2x+
)(4分)
∴函数f(x)取得最大值为
.(5分)
相应的自变量x的取值集合为{x|x=
+kπ(k∈Z)}(7分)
(II)由f(x0)=
得
sin(2x0+
)=
,即sin(2x0+
)=
因为x0∈(0,
),所以2x0+
∈(
,
),从而cos(2x0+
)=
(9分)
于是f(x0+
)=
sin(2x0+
+
)=
sin[(2x0+
)+
]=
sin[(2x0+
)+
]=
[sin(2x0+
)cos
+cos(2x0+
)sin
]
=
(
×
+
×
)=
(14分)
| a |
| b |
∴f(x)=
| a |
| b |
=sin2x+cos2x(3分)
=
| 2 |
| π |
| 4 |
∴函数f(x)取得最大值为
| 2 |
相应的自变量x的取值集合为{x|x=
| π |
| 8 |
(II)由f(x0)=
4
| ||
| 5 |
| 2 |
| π |
| 4 |
4
| ||
| 5 |
| π |
| 4 |
| 4 |
| 5 |
因为x0∈(0,
| π |
| 8 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
于是f(x0+
| π |
| 3 |
| 2 |
| π |
| 4 |
| π |
| 3 |
| 2 |
| π |
| 4 |
| π |
| 3 |
| 2 |
| π |
| 4 |
| π |
| 3 |
| 2 |
| π |
| 4 |
| π |
| 3 |
| π |
| 4 |
| π |
| 3 |
=
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
| ||
| 2 |
4
| ||||
| 10 |
点评:本题是中档题,考查了向量的数量积的计算,二倍角和两角和的正弦函数,三角函数的最值,考查转化思想,整体代入思想,合理应用角的变形,二倍角公式的转化,是本题的难点,注意总结应用.
练习册系列答案
相关题目