题目内容

已知向量m=(
3
sin
x
4
,1),n=(cos
x
4
,cos2
x
4
)
.记f(x)=
m
n

(I)若f(x)=
3
2
,求cos(
3
-x)
的值;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,若f(A)=
1+
3
2
,试判断△ABC的形状.
分析:(I)利用向量的数量积公式、二倍角公式及辅助角公式,化简函数,再利用f(x)=
3
2
,即可求cos(
3
-x)
的值;
(Ⅱ)利用正弦定理,将边转化为角,求得B=
π
3
,再利用f(A)=
1+
3
2
,求得A=
π
3
,即可判断三角形的形状.
解答:解:(I)∵向量m=(
3
sin
x
4
,1),n=(cos
x
4
,cos2
x
4
)

∴f(x)=
m
n
=
3
sin
x
4
cos
x
4
+cos2
x
4
=sin(
x
2
+
π
6
)+
1
2

f(x)=
3
2

sin(
x
2
+
π
6
)+
1
2
=
3
2

sin(
x
2
+
π
6
)=1

cos(x+
π
3
)=1-2sin2(
x
2
+
π
6
)=-1

cos(
3
-x)=-cos(
π
3
+x)=1

(Ⅱ)∵(2a-c)cosB=bcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA
∵sinA>0,∴cosB=
1
2

∵B∈(0,π),∴B=
π
3

f(A)=
1+
3
2

sin(
A
2
+
π
6
)=
3
2

A
2
+
π
6
π
3
A
2
+
π
6
=
3

∴A=
π
3
或A=π(舍去)
∴C=
π
3

∴△ABC为正三角形.
点评:本题考查向量与三角函数知识的综合,考查三角函数的化简,考查正弦定理的运用,正确运用公式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网