题目内容
16.同一个宿舍的4个学生每人制作一个贺年卡,先集中起来,然后每人拿出一张别人制作的贺年卡,则这四张贺年卡有9种不同的分配方法.分析 法一:设四人分别为a、b、c、d,写的卡片分别为A、B、C、D,从a开始分析,易得a有三种拿法,假设设a拿了B,再分析b的取法数目,剩余两人只有一种取法,由分步计数原理,计算可得答案;
法二:根据题意,列举出所有的结果,即可得答案.
解答 解:法一:
设四人分别为a、b、c、d,写的卡片分别为A、B、C、D,
由于每个人都要拿别人写的,即不能拿自己写的,故a有三种拿法,
不妨设a拿了B,则b可以拿剩下三张中的任一张,也有三种拿法,c和d只能有一种拿法,
所以共有3×3×1×1=9种分配方式,
法二:
根据题意,列举出所有的结果,
1、甲乙互换,丙丁互换;
2、甲丙互换,乙丁互换;
3、甲丁互换,乙丙互换;
4、甲要乙的 乙要丙的 丙要丁的 丁要甲的;
5、甲要乙的 乙要丁的 丙要甲的 丁要丙的;
6、甲要丙的 丙要乙的 乙要丁的 丁要甲的;
7、甲要丙的 丙要丁的 乙要丁的 丁要甲的;
8、甲要丁的 丁要乙的 乙要丙的 丙要甲的;
9、甲要丁的 丁要丙的 乙要甲的 丙要乙的.
通过列举可以得到共有9种结果.
故答案为:9.
点评 本题考查排列、组合的运用,法二用列举法分析,注意排除不合题意的情况,同时列举时要按照一定的规律,做到不重不漏.
练习册系列答案
相关题目
7.如果两个函数的图象经过平移后能重合,那么这两个函数称为“和谐”函数.下列函数中与g(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)能构成“和谐”函数的是( )
| A. | f(x)=sin(x+$\frac{π}{4}$) | B. | f(x)=2sin(x-$\frac{π}{4}$) | C. | f(x)=$\sqrt{2}$sin(x+$\frac{π}{4}$)+2 | D. | f(x)=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{4}$) |
4.f(x)=e-x(x2-3x+1),若对于任意m,n∈[$\frac{1}{2}$,+∞),|f(m)-f(n)|<a恒成立,a的取值范围是( )
| A. | ($\frac{5}{{e}^{4}}$+$\frac{1}{2\sqrt{e}}$,+∞) | B. | ($\frac{5}{{e}^{4}}$-$\frac{1}{2\sqrt{e}}$,+∞) | C. | ($\frac{5}{{e}^{4}}$+$\frac{1}{e}$,+∞) | D. | (-$\frac{1}{e}$,$\frac{5}{{e}^{4}}$) |
9.$\frac{x^2}{25}+\frac{y^2}{9}=1$的右焦点坐标是( )
| A. | (3,0) | B. | (4,0) | C. | (5,0) | D. | (6,0) |
7.下列函数中,既是定义域内的增函数又是奇函数的是( )
| A. | y=lnx | B. | $y=-\frac{1}{x}$ | C. | y=x3 | D. | y=sinx |