题目内容
12.分析 先求出成绩在[16,18]的学生的频率,由此能求出成绩在[16,18]的学生人数.
解答 解:频率分布直方图中,
从左到右的5个小矩形的面积之比为1:3:7:6:3,
∴成绩在[16,18]的学生的频率为:$\frac{6+3}{1+3+7+6+3}$=0.45,
∴成绩在[16,18]的学生人数是:480×0.45=216.
故答案为:216.
点评 本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.
练习册系列答案
相关题目
3.
已知ω>0,a>0,f(x)=asinωx+$\sqrt{3}$acosωx,g(x)=2cos(ax+$\frac{π}{6}$),h(x)=$\frac{f(x)}{g(x)}$这3个函数在同一直角坐标系中的部分图象如图所示,则函数g(x)+h(x)的图象的一条对称轴方程可以为( )
| A. | x=$\frac{π}{6}$ | B. | x=$\frac{13π}{6}$ | C. | x=-$\frac{23π}{12}$ | D. | x=-$\frac{29π}{12}$ |
7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1、F2,以F1F2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |