题目内容

已知数列{an}中,a1=2,Sn为其前n项和,且2an,,nan(nN*)成等差数列.设bn=,记数列{bn}的前n项和为Tn.

(1)求数列{an}的通项公式;

(2)设Tn=P,试比较与2n的大小,并证明你的结论.

解:(1)依题意,得2·=2an+nan,即3Sn=(2+n)an(nN*),                                    ?

∴3Sn-1=(1+n)an-1(n≥2),以上两式相减,得?

3(Sn-Sn-1)=(2+n)an-(1+n)an-1,整理得3an=(2+n)an-(1+n)an-1,?

=.                                                                                         ?

由此得an=a1····…··?

=a1····…···?

=a1·.?

a1=2,∴an=n(n+1)(nN*).                                                                      ?

(2)Tn=b1+b2+…+bn=++…+?

=1-+-+…+-?

=1-=,                                                                                             ?

Tn==1,即p=1,则?

==n(n+1).?

=an.                                                                                                        ?

n=1时,a1=1(1+1)=2,∴a1=21;?

n=2,3,4时,则a2=2(2+1)=6,∴a2>22,?

a3=3(3+1)=12,∴a3>23,a4=4(4+1)=20,?

a4>24;?

n≥5时,猜想an<2n.                                                                                             ?

证法一:∵2n=(1+1)n=C0n+C1n+C2n+…+Cn-2n+Cn-1n+Cnn?

≥2(C0n+C1n+C2n)=2[1+n+]?

=n2+n+2>n2+n=n(n+1)=an,?

∴当n≥5时,an<2n.?

综上所述,当n=1时,=2n;?

n=2,3,4时,>2n;?

n≥5时,<2n.                                                                                           ?

证法二:①当n=5时,a5=5(5+1)=30<25成立;?

②假设当n=k(k≥5)时,猜想成立,则有ak<2k,即k(k+1)<2k,那么,??

n=k+1时,有ak+1=(k+1)(k+2)=ak+2k+2<2k+2k+2,?

又∵k≥5时,2k-1=C0k-1+C1k-1+C2k-1+…=1+(k-1)+C2k-1+…=k+C2k-1+…>k+1,?

∴2(k+1)<2·2k-1=2k,故2k+2k+2<2k+2k=2k+1,即ak+1<2k+1成立.?

由①②可知,an<2n对一切n≥5的正整数都成立.?

综上所述,当n=1时,=2n;当n=2,3,4时,>2n;??

n≥5时,<2n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网