题目内容

在△ABC中,已知tanA=
1
2
,tanB=
1
3
,该三角形的最长边为1,
(Ⅰ)求角C;
(Ⅱ)求△ABC的面积S.
(Ⅰ)由tan(A+B)=
tanA+tanB
1-tanAtanB
=1

而在△ABC中,0<A+B<π,
所以A+B=
π
4
,则C=
3
4
π

(Ⅱ)在△ABC中,
∵∠C是钝角,
∴边c最长,从而c=1
tanB=
1
3
,得sinB=
10
10
.

tanA=
1
2
,得sinA=
5
5

由正弦定理
b
sinB
=
c
sinC
,得b=
5
5
.

∴△ABC的面积S=
1
2
bcsinA=
1
10
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网