题目内容
(2012•江苏三模)已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an.
(1)求数列{an}的通项公式;
(2)设区间[
,
]中的整数个数为bn,求数列{bn}的通项公式.
(1)求数列{an}的通项公式;
(2)设区间[
| an |
| 3n |
| an+1 |
| 3(n+1) |
分析:(1)由nan+1=2(n+1)an,得
=
,利用叠乘法,即可求得数列{an}的通项公式;
(2)由(1)确定区间左右端点对应的通项,分n为奇数、偶数时讨论,即可求数列{bn}的通项公式.
| an+1 |
| an |
| 2(n+1) |
| n |
(2)由(1)确定区间左右端点对应的通项,分n为奇数、偶数时讨论,即可求数列{bn}的通项公式.
解答:解:(1)由nan+1=2(n+1)an,得
=
,当n≥2时,
=
,
所以,当n≥2时,an=
•
•…•
•a1=
•
•…
•2=n•2n,
此式对于n=1也成立,所以数列{an}的通项公式为an=n•2n.…(4分)
(2)由(1)知,
=
=
=
3n-1-
3n-2+…+(-1)n-1
+
,
=
=
=
3n-
3n-1+…+(-1)n
+
,…(8分)
当n为奇数时,bn=(
-
)-(
+
)+1=
;
当n为偶数时,bn=(
+
-1)-(
-
)=
.…(10分)
| an+1 |
| an |
| 2(n+1) |
| n |
| an |
| an-1 |
| 2n |
| n-1 |
所以,当n≥2时,an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| 2n |
| n-1 |
| 2(n-1) |
| n-2 |
| 2•2 |
| 1 |
此式对于n=1也成立,所以数列{an}的通项公式为an=n•2n.…(4分)
(2)由(1)知,
| an |
| 3n |
| 2n |
| 3 |
| (3-1)n |
| 3 |
| C | 0 n |
| C | 1 n |
| C | n-1 n |
| (-1)n |
| 3 |
| an+1 |
| 3(n+1) |
| 2n+1 |
| 3 |
| (3-1)n+1 |
| 3 |
| C | 0 n+1 |
| C | 1 n+1 |
| C | n n+1 |
| (-1)n+1 |
| 3 |
当n为奇数时,bn=(
| 2n+1 |
| 3 |
| 1 |
| 3 |
| 2n |
| 3 |
| 1 |
| 3 |
| 2n+1 |
| 3 |
当n为偶数时,bn=(
| 2n+1 |
| 3 |
| 1 |
| 3 |
| 2n |
| 3 |
| 1 |
| 3 |
| 2n-1 |
| 3 |
点评:本题考查数列递推式,考查数列通项,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目