题目内容

6.在?ABCD中,E是AB边所在线上任意一点,若$\overrightarrow{CE}=-\overrightarrow{CA}+λ\overrightarrow{DA}$(λ∈R),则λ=2.

分析 根据A、M、B三点共线,可得存在实数μ使得$\overrightarrow{AE}$=μ$\overrightarrow{EB}$ 成立,化简整理得 $\overrightarrow{CE}$=$\frac{1}{1+μ}$$\overrightarrow{CA}$+$\frac{μ}{1+μ}$$\overrightarrow{CB}$,结合已知等式建立关于λ、μ的方程组,解之即可得到实数λ的值.

解答 解:∵△ABC中,E是AB边所在直线上任意一点,
∴存在实数μ,使得$\overrightarrow{AE}$=μ$\overrightarrow{EB}$,即$\overrightarrow{CE}$-$\overrightarrow{CA}$=μ($\overrightarrow{CB}$-$\overrightarrow{CE}$),
化简得 $\overrightarrow{CE}$=$\frac{1}{1+μ}$$\overrightarrow{CA}$+$\frac{μ}{1+μ}$$\overrightarrow{CB}$,
∵$\overrightarrow{CE}$=-$\overrightarrow{CA}$+λ$\overrightarrow{DA}$=-$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,∴结合平面向量基本定理,得$\left\{\begin{array}{l}{\frac{1}{1+μ}=-1}\\{\frac{μ}{1+μ}=λ}\end{array}\right.$,
解之得λ=2,μ=-2,
故答案为:2.

点评 本题给出A、M、B三点共线,求用向量$\overrightarrow{CA}$、$\overrightarrow{CB}$表示$\overrightarrow{CE}$的表达式,着重考查了平面向量的线性运算和平面向量基本定理等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网