题目内容
4.已知等差数列{an}满足a1=1,a3+a7=18.(1)求数列{an}的通项公式;
(2)若cn=2n-1an,求数列{cn}的前n项和Tn.
分析 (1)利用等差数列的通项公式即可得出;
(2)cn=(2n-1)×2n-1,再利用“错位相减法”与等比数列的通项公式及其前n项和公式即可得出.
解答 解:(1)数列{an}是等差数列,设其公差为d,
∵a1=1,a3+a7=18.
∴2+8d=18,
解得d=2.
∴an=a1+(n-1)d=1+2(n-1)=2n-1,
即数列{an}的通项公式为an=2n-1.
(2)∵cn=(2n-1)×2n-1,
∴Tn=c1+c2+c3+…+cn=1×20+3×21+5×22+…+(2n-1)×2n-1,①
2Tn=1×21+3×22+…+(2n-3)×2n-1+(2n-1)×2n,②
①-②得-Tn=1+2(21+22+23+…+2n-1)-(2n-1)×2n,
整理得-Tn=1+2×$\frac{2-2n}{1-2}$-(2n-1)•2n=-(2n-3)×2n-3.
∴Tn=(2n-3)•2n+3.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.在极坐标系下,过直线ρcosθ+ρsinθ=2$\sqrt{2}$上任意一点M,作曲线ρ=1的两条切线,则这两条切线的夹角的最大值为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
16.2log510+log51.25=( )
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
13.已知f(x)是定义在R上的偶函数,并满足f(x+2)=$\frac{1}{f(x)}$,当2≤x≤3,f(x)=x,则f(25.5)等于( )
| A. | -5.5 | B. | -2.5 | C. | 2.5 | D. | 5.5 |