题目内容
(08年北师大附中月考) 已知函数f (x )对任意的x∈R都有f (x ) + f (1-x) =
.
(1)求f (
)和f (
) + f (
)(n∈N*)的值;
(2)数列{an}满足an = f (0) + f (
) + f (
) + … + f (
) + f (1),求数列{an}的通项公式an;
(3)令bn = (an-
)×3n,数列{bn}的前n项的和Sn.
解析:(1)∵ 函数f (x )对任意的x∈R都有f (x ) + f (1-x) =
.
∴ 令x =
时,f (
) + f (
) =
,解得f (
) =
;
令x =
时,则f (
) + f (
) =
.
(2)由(1)可知, f (
) + f (
) =
,
故有:f (0) + f (1) = f (
) + f (
) = … =
,
an = f (0) + f (
) + f (
) + … + f (
) + f (
) + f (1),
an = f (1) + f (
) + f (
) + … + f (
) + f (
) + f (0),
上面二式相加,得:2an = n [ f (0) + f (1)] =
(n + 1),解得an =
.
(3)由(2)可知,bn = (an-
)×3n =
n×3n,
∴ Sn =
×3 +
×2×32 +
×3×33 +
×4×34 + … +
n×3n, ①
3 Sn =
×32 +
×2×33 +
×3×34 + … +
(n-1)×3n +
n×3n + 1, ②
①-②,得:
-2Sn =
(3 + 32 + 33 + … + 3n )-
n×3n + 1 =
×
-
n×3n + 1
=
[
(1-2n)×3n +1-
].
故Sn =
[
(2n-1)×3n +1 +
].
练习册系列答案
相关题目