题目内容
5.(Ⅰ)求椭圆C的方程;
(Ⅱ)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
(Ⅲ)若点B关于x轴的对称点是E,证明:直线AE过定点.
分析 (Ⅰ)可知c=1,从而得a2=b2+1,$\frac{1}{{a}^{2}}$+$\frac{\frac{9}{4}}{{b}^{2}}$=1,从而求得椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)由题意知直线AB的斜率存在,故设直线AB的方程为y=k(x-4);与椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1联立化简可得(4k2+3)x2-32k2x+64k2-12=0;从而可解得k2<$\frac{1}{4}$;再设A(x1,y1),B(x2,y2);从而可得x1+x2=$\frac{32{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{64{k}^{2}-12}{4{k}^{2}+3}$;化简y1y2=k(x1-4)k(x2-4)=k2x1x2-4k2(x1+x2)+16k2,从而可得$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=(1+k2)$\frac{64{k}^{2}-12}{4{k}^{2}+3}$-4k2$\frac{32{k}^{2}}{4{k}^{2}+3}$+16k2=25-$\frac{87}{4{k}^{2}+3}$;从而求其取值范围;
(Ⅲ)可设E(x2,-y2);从而写出直线AE的方程为y-y1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}-{x}_{2}}$(x-x1),令y=0并化简可得x=$\frac{2{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-8}$;再将x1+x2=$\frac{32{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{64{k}^{2}-12}{4{k}^{2}+3}$代入化简可得x=1;从而证明.
解答 解:(Ⅰ)由题意,c=1,
a2=b2+1,$\frac{1}{{a}^{2}}$+$\frac{\frac{9}{4}}{{b}^{2}}$=1,
解得,a2=4,b2=3;
故椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)由题意知直线AB的斜率存在,
设直线AB的方程为y=k(x-4);
与椭圆方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1联立化简可得,
(4k2+3)x2-32k2x+64k2-12=0;
则令△=(-32k2)2-4(4k2+3)(64k2-12)>0得,
k2<$\frac{1}{4}$;
设A(x1,y1),B(x2,y2);
则x1+x2=$\frac{32{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{64{k}^{2}-12}{4{k}^{2}+3}$;
则y1y2=k(x1-4)k(x2-4)=k2x1x2-4k2(x1+x2)+16k2,
则$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=(1+k2)$\frac{64{k}^{2}-12}{4{k}^{2}+3}$-4k2$\frac{32{k}^{2}}{4{k}^{2}+3}$+16k2=25-$\frac{87}{4{k}^{2}+3}$;
∵0≤k2<$\frac{1}{4}$,
∴-$\frac{87}{3}$≤-$\frac{87}{4{k}^{2}+3}$<-$\frac{87}{4}$;
∴$\overrightarrow{OA}•\overrightarrow{OB}$∈[-4,$\frac{13}{4}$).
(Ⅲ)证明:∵点B关于x轴的对称点是E,
∴E(x2,-y2);
直线AE的方程为
y-y1=$\frac{{y}_{1}+{y}_{2}}{{x}_{1}-{x}_{2}}$(x-x1),
令y=0得,
x=x1-$\frac{{y}_{1}({x}_{1}-{x}_{2})}{{y}_{1}+{y}_{2}}$
=$\frac{2{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-8}$;
将x1+x2=$\frac{32{k}^{2}}{4{k}^{2}+3}$,x1x2=$\frac{64{k}^{2}-12}{4{k}^{2}+3}$代入化简可得,
x=1;
故直线AE与x轴交于定点(1,0).
即直线AE过定点.
点评 本题考查了椭圆的方程的求法及学生的化简与运算能力,化简很复杂,属于难题.
| A. | -$\frac{2}{3}π$ | B. | $\frac{2}{3}π$ | C. | -$\frac{5}{6}π$ | D. | $\frac{5}{6}π$ |