题目内容
【题目】已知函数![]()
(1)当
时,求函数
的单调增区间;
(2)若曲线
在点
处的切线
与曲线
有且只有一个公共点,求实数
的取值范围.
【答案】(1)
;(2)
或
.
【解析】试题分析:(1)求出f(x)的导数,由导数大于0,可得增区间;
(2)求出f(x)导数,求得切线的斜率和切点,可得切线方程,由题意可得关于x的方程
有且只有一个解,即
有且只有一个解.令
,求出导数,对m讨论,求出单调区间,运用单调性即可得到m的范围.
试题解析:
(1)由题意知,
,
所以
.
令
得
,所以函数
的单调增区间是![]()
所以曲线
在点
处的切线
的方程为
,
因为
与曲线
有且只有一个公共点,
即关于
的方程
有且只有一个解,
即
有且只有一个解.
令
,
则
.
①
时,由
得
,由
,得
,
所以函数
在
上为增函数,在
上为减函数,
又
,故
符合题意;
②当
时,由
,得
或
,由
,得
,
所以函数
在
上为增函数,在
上为减函数,在
上为减函数,
又
,且当
时,
,此时曲线
与
轴有两个交点,
故
不合题意;
③当
时,
在
上为增函数,且
,
故
符合题意;
④当
,由
,得
或
,由
,得
,
所以函数
在
上为增函数,在
上为减函数,在
上为增函数,
又
,且当
时,
,此时曲线
与
轴有两个交点,
故
不合题意;
综上,实数
的取值范围
或
.
练习册系列答案
相关题目