题目内容

设平面点集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-2)2+(y-2)2≤4},则 A∩B所表示的平面图形的面积是(  )
分析:由集合A,B的式子的几何意义,作出A∩B如图所示的阴影部分,再利用圆和函数y=
1
x
的对称性即可求出面积.
解答:解:由B={(x,y)|(x-1)2+(y-1)2≤4},
可知集合B表示的图形是以(2,2)为圆心,2为半径的圆面,
由(y-x)(y-
1
x
)≥0,得
y≥x
y≥
1
x
,或
y≤x
y≤
1
x

所以集合A∩B所表示的平面图形为如图所示的阴影部分:
由圆和函数y=
1
x
的对称性可知:图中的A部分和B部分面积相等,
故S阴影=
1
2
×π×22=2π,
故选D
点评:本题考查线性规划的可行域的面积,正确找出可行域和利用对称性求面积是解题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网