题目内容

(理科)若锐角α,β满足tanα•tanβ=
13
7
,且sin(α-β)=
5
3
,求

(1)cos(α-β); (2)cos(α+β)
(1)∵α,β为锐角,则-
π
2
<α-β<
π
2

而sin(α-β)=
5
3
>0,则0<α-β<
π
2

∴cos(α-β)=
1-sin2(α-β)
=
2
3
;(6分)
(2)∵tanαtanβ=
13
7

cos(α+β)
cos(α-β)
=
cosαcosβ-sinαsinβ
cosαcosβ+sinαsinβ

=
1-tanαtanβ
1+tanαtanβ
=
1-
13
7
1+
13
7
=-
3
10

又cos(α-β)=
2
3

∴cos(α+β)=-
1
5
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网