题目内容
求tan20°+4sin20°的值.分析:首先利用弦切互化公式及正弦的倍角公式对原式进行变形,再两次运用和差化积公式,同时结合正余弦互化公式,则问题解决.
解答:解:tan20°+4sin20°=
=
=
=
=
=
=2sin60°=
.
| sin20°+4sin20°cos20° |
| cos20° |
=
| sin20°+2sin40° |
| cos20° |
=
| (sin20°+sin40°)+sin40° |
| cos20° |
=
| 2sin30°cos10°+sin40° |
| cos20° |
=
| sin80°+sin40° |
| cos20° |
| 2sin60°cos20° |
| cos20° |
=2sin60°=
| 3 |
点评:本题考查三角函数式的恒等变形及运算能力.
练习册系列答案
相关题目