题目内容
已知点是圆:上的动点,点,,是以坐标原点为圆心的单位圆上的动点,且,则的最小值为( )
A. B. C. D.
若过点与曲线相切的直线有两条,则实数的取值范围是 ( )
已知抛物线与点,过的焦点,且斜率为的直线与交于,两点,若,则 .
选修4-4:坐标系与参数方程
已知圆的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,取相同单位长度(其中,,).
(1)直线过原点,且它的倾斜角,求与圆的交点的极坐标(点不是坐标原点);
(2)直线过线段中点,且直线交圆于,两点,求的最大值.
大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用万元购进一部节能环保汽车,用于出租.假设第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该车每年的运营收入均为万元.若该车使用了()年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于 .
执行如图所示的程序框图(算法流程图),输出为( )
在平面直角坐标系中,圆的方程为.以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.
(Ⅰ)当时,判断直线与的关系;
(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.
如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为( )
设全集U=R,集合则 ; .