题目内容
3.设f(x)和g(x)是定义在R上的两个函数,x1,x2是任意两个不相等的实数.(1)设|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)是奇函数,试判断函数g(x)的奇偶性,并加以证明;
(2)设|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且f(x)是R上的增函数,试判断函数h(x)=f(x)+g(x)在R上的单调性,并加以证明.
分析 (1)利用|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,设x2=-x1,|f(x1)+f(-x1)|≥|g(x1)+g(-x1)|恒成立,根据f(x)是奇函数,即可得出结论;
(2)利用函数单调性的定义,即可得出结论.
解答 解:(1)∵|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,
∴x2=-x1,|f(x1)+f(-x1)|≥|g(x1)+g(-x1)|恒成立,
∵f(x)是奇函数,
∴|f(x1)-f(x1)|≥|g(x1)+g(-x1)|恒成立,
∴g(x1)+g(-x1)=0,
∴g(-x1)=-g(x1),
∴g(x)是奇函数;
(2)设x1<x2,
∵f(x)是R上的增函数,
∴f(x1)<f(x2),
∵|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,
∴f(x1)-f(x2)<g(x1)-g(x2)<f(x2)-f(x1),
∴h(x1)-h(x2)=f(x1)-f(x2)+g(x1)-g(x2)<f(x1)-f(x2)+f(x2)-f(x1),
∴h(x1)-h(x2)<0,
∴函数h(x)=f(x)+g(x)在R上是增函数.
点评 本题考查函数的单调性、奇偶性,考查学生分析解决问题的能力,正确运用函数的单调性、奇偶性的定义是关键.
练习册系列答案
相关题目
14.已知函数f(x)为偶函数,它在[0,+∞)上为减函数,若f(lgx)<f(1),则x的取值范围是( )
| A. | ($\frac{1}{10}$,1) | B. | (0,1)∪(1,+∞) | C. | ($\frac{1}{10}$,10) | D. | $(0,\frac{1}{10})∪(10,+∞)$ |
18.“神七”飞天,举国欢庆.据计算,运载飞船的火箭,在点火后1分钟通过的路程为2km,以后每分钟通过的路程比前一分钟增加2km,在到达离地面240km的高度时,火箭与飞船分离这一过程需要的时间是( )
| A. | 10分钟 | B. | 13分钟 | C. | 15分钟 | D. | 20分钟 |
8.设函数f(x)=$\left\{\begin{array}{l}5-{log_3}(1-x),x<1\\{3^x}-2,x≥1\end{array}\right.$,则满足f(x)≥7的x的取值范围是( )
| A. | [$\frac{8}{9}$,1) | B. | [$\frac{8}{9}$,+∞) | C. | [2,+∞) | D. | [$\frac{8}{9}$,1)∪[2,+∞) |