题目内容
在直角坐标系xOy中,点P到两点(0,-| 3 |
| 3 |
(1)求曲线C的方程;
(2)过点(0,
| 3 |
分析:(1)由题中条件:“点P到两点(0,-
),(0,
)的距离之和等于4,”结合椭圆的定义知其轨迹式样,从而求得其方程.
(2)先将直线方程与椭圆方程联立方程组,消去y得到一个一元二次方程,再利用根与系数的关系结合向量垂直的条件列关于k方程式即可求得参数k值.
| 3 |
| 3 |
(2)先将直线方程与椭圆方程联立方程组,消去y得到一个一元二次方程,再利用根与系数的关系结合向量垂直的条件列关于k方程式即可求得参数k值.
解答:解:(1)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-
),(0,
)为焦点,长半轴为2的椭圆.它的短半轴b=
=1,故曲线C的方程为x2+
=1.
(2)设直线l1:y=kx+
,分别交曲线C于A(x1,y1),B(x2,y2),其坐标满足
消去y并整理得(k2+4)x2+2
kx-1=0,
故x1+x2=-
,x1x2=-
.
以线段AB为直径的圆过能否过坐标原点,则
⊥
,即x1x2+y1y2=0.
而y1y2=k2x1x2+
k(x1+x2)+3,
于是x1x2+y1y2=-
-
-
+3=0,化简得-4k2+11=0,所以k=±
| 3 |
| 3 |
22-(
|
| y2 |
| 4 |
(2)设直线l1:y=kx+
| 3 |
|
| 3 |
故x1+x2=-
2
| ||
| k2+4 |
| 1 |
| k2+4 |
以线段AB为直径的圆过能否过坐标原点,则
| OA |
| OB |
而y1y2=k2x1x2+
| 3 |
于是x1x2+y1y2=-
| 1 |
| k2+4 |
| k2 |
| k2+4 |
| 6k2 |
| k2+4 |
| ||
| 2 |
点评:本题考查“定义法”求曲线的轨迹方程、直线与圆锥曲线的综合问题及方程思想,定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.
练习册系列答案
相关题目