题目内容
【题目】如图,在平面四边形
中,
等边三角形,
,以
为折痕将
折起,使得平面
平面
.
![]()
(1)设
为
的中点,求证:
平面
;
(2)若
与平面
所成角的正切值为
,求二面角
的余弦值.
【答案】(1)见证明;(2) ![]()
【解析】
(1)推导出
平面
,从而
,再求出
,由此能证明
平面
.
(2)由
平面
,知
即为
与平面
所成角,从而在直角
中,
,以
为坐标原点,分别以
,
所在的方向作为
轴、
轴的正方向,建立空间直角坐标系
.利用向量法能求出二面角
的余弦值.
证明:(1)因为平面
平面
,
平面
平面
,
平面
,
,
所以
平面
.
又
平面
,所以
.
在等边
中,因为
为
的中点,所以
.
因为
,
,
,
所以
平面
.
(2)解:由(1)知
平面
,所以
即为
与平面
所成角,
于是在直角
中,
.
以
为坐标原点,分别以
,
所在的方向作为
轴、
轴的正方向,建立如图所示的空间直角坐标系
.
设等边
的边长为
,
则
,
,
,
,
,
,
,
,
.
设平面
的一个法向量为
,
则
,即
,
令
,则
,
,于是
.
设平面
的一个法向量为
,
则
,即
,
解得
,令
,则
,于是
.
所以
.
由题意知二面角
为锐角,所以二面角
的余弦值为
.
![]()
【题目】改革开放以来,伴随着我国经济持续增长,户均家庭教育投入
户均家庭教育投入是指一个家庭对家庭成员教育投入的总和
也在不断提高
我国某地区2012年至2018年户均家庭教育投入
单位:千元
的数据如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
户均家庭教育投入y |
|
|
|
|
|
|
|
求y关于t的线性回归方程;
利用
中的回归方程,分析2012年至2018年该地区户均家庭教育投入的变化情况,并预测2019年该地区户均家庭教育投入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(I)在答题卡上作出这些数据的频率分布直方图:
![]()
(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?