题目内容
使得函数的值域为的实数对有 对.
下列条件中,能判断两个平面平行的是( )
A.一个平面内的一条直线平行于另一个平面;
B.一个平面内的两条直线平行于另一个平面
C.一个平面内有无数条直线平行于另一个平面
D.一个平面内任何一条直线都平行于另一个平面
化为弧度是( )
A. B. C. D.
(本小题满分12分)
已知椭圆的离心率为,以原点为圆心,椭圆的长半轴这半径的圆与直线相切.
(1)求椭圆标准方程;
(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
已知展开式的常数项为15,则展开式的各项系数和为 .
(本小题满分12分)
已知等差数列的前项和为, ,.
(1)求数列的通项公式;
(2)设,求数列的前项和为.
已知三棱锥中, ,,.则该三棱锥的外接球表面积为________.
(12分)如图,四棱锥P﹣ABCD的底面是边长为1的正方形,PA⊥底面ABCD,E、F分别为AB、PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)若PA=2,试问在线段EF上是否存在点Q,使得二面角Q﹣AP﹣D的余弦值为?若存在,确定点Q的位置;若不存在,请说明理由.
在△ABC中,内角A,B,C的对边分别是a,b,c,若 ,
则A=( )
A.150 B.120 C.60 D.30