题目内容
△ABC的外接圆的圆心为O,两条边上的高的交点为H.则实数m=______.
M=1
已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的是________.
①当x=时,函数f(x)取得极小值;②f(x)有两个极值点;③当x=2时,函数f(x)取得极小值;④当x=1时,函数f(x)取得极大值.
已知un=an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).
(Ⅰ)当a=b时,求数列{un}的前项n项和Sn。
(Ⅱ)求。
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)
(Ⅲ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论.
由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,<APB=60.,则动点P的轨迹方程为_____.
曲线C:
点为圆的弦的中点,则该弦所在直线的方程是 ;
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F.
(1)证明:PA//平面EDB;
(2)证明:BP⊥平面EFD;
(3)求二面角C—PD—D的大小.
如图,在底面ABCD为平行四边形的四棱柱ABCD-A1B1C1D1中,M是AC与BD的交点,若=a,=b,=c则下列向量中与相等的向量是( )
A.-a+b+c B.a+b+c
C.a-b+c D.-a-b+c