题目内容
(2011•徐州模拟)已知函数f(x)=sin2(x-
)+cos2(x-
)+sinx•cosx,x∈R.
(1)求f(x)的最大值及取得最大值时的x的值;
(2)求f(x)在[0,π]上的单调增区间.
| π |
| 6 |
| π |
| 3 |
(1)求f(x)的最大值及取得最大值时的x的值;
(2)求f(x)在[0,π]上的单调增区间.
分析:(1)先由两角差的正弦(余弦)公式,倍角公式化简解析式,再由正弦函数的最大值求出函数的最大值 以及对应的自变量的值;
(2)由x的范围求出“2x-
”的范围,再由正弦函数的单调性求出函数的增区间.
(2)由x的范围求出“2x-
| π |
| 4 |
解答:解:(1)由题意得,
f(x)=(sinxcos
-cosxsin
)2+(cosxcos
+sinxsin
)2+sinx•cosx
=sin2x+sinx•cosx+
=
(sin2x-cos2x)+1
=
sin(2x-
)+1,
当2x-
=
+2kπ(k∈Z),
即x=
+kπ(k∈Z)时,函数f(x)取最大值为:
+1,
(2)由0≤x≤π得,-
≤2x-
≤
,
∴函数f(x)=
sin(2x-
)+1的增区间是:[-
,
].
f(x)=(sinxcos
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
=sin2x+sinx•cosx+
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
当2x-
| π |
| 4 |
| π |
| 2 |
即x=
| 3π |
| 8 |
| ||
| 2 |
(2)由0≤x≤π得,-
| π |
| 4 |
| π |
| 4 |
| 7π |
| 4 |
∴函数f(x)=
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
点评:本题考查了正弦函数的性质,以及三角恒等变换中的公式在化简解析式时应用,属于中档题.
练习册系列答案
相关题目