题目内容

18.已知数列{an}中,首项a1=1,分别求出满足下列条件数列的通项公式.
(1)an+1=an+3n2+3n+1(n∈N*
(2)nan=a1+2a2+3a3+…+(n-1)an-1(n≥2,n∈N*

分析 (1)由an+1=an+3n2+3n+1可得a2-a1=3×12+3×1+1,a3-a2=3×22+3×2+1,…,从而利用累加法求解;
(2)化简nan=a1+2a2+3a3+…+(n-1)an-1可得(n+1)an+1=2nan,从而可得数列{nan}从第2项起成以1为首项,2为公比的等比数列,从而解得.

解答 解:(1)∵an+1=an+3n2+3n+1,
∴a2-a1=3×12+3×1+1,
a3-a2=3×22+3×2+1,
…,
an-an-1=3×(n-1)2+3×(n-1)+1,
累加可得,
an-a1=(3×12+3×1+1)+(3×22+3×2+1)+…+(3×(n-1)2+3×(n-1)+1),
an-a1=3$\frac{(n-1)n(2n-1)}{6}$+3$\frac{1+n-1}{2}$•(n-1)+n-1,
=(n-1)(n2+n+1),
故an=(n-1)(n2+n+1)+1;
(2)∵nan=a1+2a2+3a3+…+(n-1)an-1
∴(n+1)an+1=a1+2a2+3a3+…+(n-1)an-1+nan
∴(n+1)an+1-nan=nan
∴(n+1)an+1=2nan
又∵1•a1=1,2a2=a1=1,
∴数列{nan}从第2项起成以1为首项,2为公比的等比数列,
∴nan=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n-2},n≥2}\end{array}\right.$,
故an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{2}^{n-2}}{n},n≥2}\end{array}\right.$.

点评 本题考查了等差数列与等比数列的性质及累加法与作差法的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网