题目内容

13.对任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,则下列不等式错误的是(  )
A.f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$)B.f($\frac{π}{3}$)>2cos1•f(1)C.f($\frac{π}{4}$)<2cos1•f(1)D.f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$)

分析 由题意可判断f(x)cosx在(0,$\frac{π}{2}$)上是增函数,从而依次判断不等式即可.

解答 解:∵对任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,
∴对任意x∈(0,$\frac{π}{2}$),不等式$\frac{sinx}{cosx}$•f(x)-f′(x)<0恒成立,
∴对任意x∈(0,$\frac{π}{2}$),不等式sinx•f(x)-cosxf′(x)<0恒成立,
又∵(f(x)cosx)′=cosxf′(x)-sinx•f(x),
∴对任意x∈(0,$\frac{π}{2}$),不等式(f(x)cosx)′>0恒成立,
∴f(x)cosx在(0,$\frac{π}{2}$)上是增函数,
∴cos$\frac{π}{3}$f($\frac{π}{3}$)>cos$\frac{π}{4}$f($\frac{π}{4}$),
即f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$),故A正确;
cos$\frac{π}{3}$f($\frac{π}{3}$)>cos1f(1),
即f($\frac{π}{3}$)>2cos1f(1),故B正确;
cos1f(1)>cos$\frac{π}{4}$f($\frac{π}{4}$),
即f($\frac{π}{4}$)<$\sqrt{2}$cos1•f(1)<2cos1•f(1),故C正确;
cos$\frac{π}{4}$f($\frac{π}{4}$)>cos$\frac{π}{6}$f($\frac{π}{6}$),
即f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$),故D错误;
故选:D.

点评 本题考查了导数的综合应用及函数的单调性的判断与应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网