题目内容
⑴已知数列中,,求数列的通项公式;
⑵已知数列中,,求数列的通项公式.
⑴,;
⑵令,得
,,
已知数列中,,,.
(1)求证:是等差数列;并求数列的通项公式;
(2)假设对于任意的正整数、,都有,则称该数列为“域收敛数列”. 试判断: 数列,是否为一个“域收敛数列”,请说明你的理由.
已知数列中,,,通项是项数的一次函数,
①求的通项公式,并求;
②若是由组成,试归纳的一个通项公式.
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(1)证明数列是“平方递推数列”,且数列为等比数列;
(2)设(1)中“平方递推数列”的前项积为,
即,求;
(3)在(2)的条件下,记,求数列的前项和,并求使的的最小值.
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;
(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.
(本题满分16分)已知数列中,, 为实常数),前项和恒为正值,且当时,.
⑴ 求证:数列是等比数列;
⑵ 设与的等差中项为,比较与的大小;
⑶ 设是给定的正整数,.现按如下方法构造项数为有穷数列:
当时,;
当时,.
求数列的前项和.