题目内容
设an是(1+
)n的展开式中x项的系数(n=2,3,4,…),则
(
+
+…+
)=
| x |
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
2
2
.分析:由题意可知:an=
=
,故
=
=2(
-
),于是
+
+…+
=2[(1-
)+(
-
)+…+(
-
)],
(
+
+…+
)的值可求.
| C | 2 n |
| n(n+1) |
| 2 |
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
解答:解:∵an是(1+
)n的展开式中x项的系数(n=2,3,4,…),
∴an=
=
,
∴
=
=2(
-
),
∴是
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]=2(1-
),
∴
(
+
+…+
)=
2(1-
)=2.
故答案为:2.
| x |
∴an=
| C | 2 n |
| n(n+1) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴是
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∴
| lim |
| n→∞ |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| lim |
| n→∞ |
| 1 |
| n+1 |
故答案为:2.
点评:本题考查二项式定理的应用及极限及其运算,着重考查裂项法求和及极限求值,属于中档题.
练习册系列答案
相关题目