题目内容
已知向量
=(3,-2),
=(4,1),
(1)求
•
,|
+
|; (2)求
与
的夹角的余弦值;
(3)求向量3
-2
的坐标 (4)求x的值使x
+3
与3
-2
为平行向量.
| a |
| b |
(1)求
| a |
| b |
| a |
| b |
| a |
| b |
(3)求向量3
| a |
| b |
| a |
| b |
| a |
| b |
(1)
•
=(3,-2)•(4,1)=3×4+(-2)×1=10,
+
=(3,-2)+(4,1)=(7,-1),(
+
) 2=50,∴|
+
|=
=5
(2)设
夹角为θ,则cosθ=
=
=
(3)3
-2
=(9,-6)-(8,2)=(1,-8)
(4)x
+3
=(3x,-2x)+(12,3)=(3x+12,-2x+3),3
-2
=(1,-8),由已知得,-2x+3=-8(3x+12),整理并解得x=-
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| 50 |
| 2 |
(2)设
| a, |
| b |
| ||||
|
|
| 10 | ||||
|
10
| ||
| 221 |
(3)3
| a |
| b |
(4)x
| a |
| b |
| a |
| b |
| 9 |
| 2 |
练习册系列答案
相关题目
已知向量
=(
,1),
=(-1,0),则向量
与
的夹角为( )
| a |
| 3 |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|