题目内容

△ABC中,内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且a2-c2=ac-bc求:
(1)A的大小;
(2)数学公式的值.

解:(1)∵a、b、c成等比数列,∴b2=ac,又a2-c2=ac-bc,∴b2+c2-a2=bc.
在△ABC中,由余弦定理得

(2)在△ABC中,由正弦定理得
∵b2=ac,

分析:(1)由题意可得 b2+c2-a2=bc,由余弦定理求得cosA的值,从而求得A的大小.
(2)在△ABC中,由正弦定理,再利用b2=ac,,求得 的值.
点评:本题主要考查正弦定理和余弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网