题目内容

等比数列{an}的前三项和S3=18,若a1,3-a2,a3成等差数列,则公比q=(  )
A.2或-
1
2
B.-2或
1
2
C.-2或-
1
2
D.2或
1
2
设等比数列的公比为q,由a1,3-a2,a3成等差数列,
所以2(3-a2)=a1+a3,即2(3-a1q)=a1+a1q2①,
S3=a1+a2+a3=a1(1+q+q2)=18②,
由①得:a1(q2+2q+1)=3③,
③÷②得:
q2+2q+1
q2+q+1
=
1
3
,解得:q=-2或q=-
1
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网