题目内容

已知A={x|x2≥4},B={x|
6-x
1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).
由x2≥4,得x≥2,或x≤-2,
∴A={x|x≥2,或x≤-2}.
又由不等式
6-x
x+1
≥0
,得-1<x≤6,
∴B={x|-1<x≤6}.
又由|x-3|<3,得0<x<6,∴C={x|0<x<6}.
∴A={x|x≤-2或x≥2},B={-1<x≤6},C={x|0<x<6},
(1)∴B∩C={-1<x≤6}∩{x|0<x<6}={x|0<x<6},
(CUB)∪(CUC)=CU(B∩C)={x|x≤0,或x≥6}.
(2)由于CU(B∩C)={x|x≤0,或x≥6}.
A∩CU(B∩C)={x|x≤-2,或x≥6}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网