题目内容

若关于x的方程3tx2+(3-7t)x+4=0的两实根α,β满足0<α<1<β<2,则实数t的取值范围是   
【答案】分析:由已知中关于x的方程3tx2+(3-7t)x+4=0的两实根α,β满足0<α<1<β<2,根据方程的根与对应函数零点之间的关系,我们易得方程相应的函数在区间(0,1)与区间(1,2)上各有一个零点,此条件可转化为不等式组,解不等式组即可得到实数t的取值范围.
解答:解:依题意,函数f(x)=3tx2+(3-7t)x+4的两个零点α,β满足0<α<1<β<2,
且函数f(x)过点(0,4),则必有

即:
解得:<t<5.
故答案为:<t<5
点评:本题考查的知识点是一元二次方程根的分布与系数的关系.其中根据方程的根与对应函数零点之间的关系,构造关于t的不等式是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网